Cabotegravir + Rilpivirine Long-Acting Effectiveness and Safety Outcomes by Sex at Birth, Age, and Race: A Subgroup Analysis of the CARISEL Study

Ronald D'Amico¹³, Jean van Wyk¹¹, Maggie Czarnogorski¹³

¹Université de Paris, INSERM UMR 1137 IAME, Paris, France; ²Service de Maladies Infectieuses et Tropicales, CHU d'Orléans, France; ⁴Hospital Bichat–Claude Bernard, Paris, France; ³Service de Maladies Infectieuses et Tropicales, CHU d'Orléans, France; ⁴Hospital Bichat–Claude Bernard, Paris, France; ⁴Hospital Clínico Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; ⁶MUC Research GmbH, Munich, Germany; ⁹Amsterdam, the Netherlands; ¹⁰Department of Infectious Diseases, University Medical Center Utrecht, Utrecht, Utrecht, the Netherlands; ¹¹ViiV Healthcare, Brentford, United Kingdom; ¹²GSK, Collegeville, PA, United States; ¹³ViiV Healthcare, Durham, NC, United States; ¹⁴GSK, Bangalore, India; ¹⁵GSK, Brentford, United Kingdom

Key Takeaways

We present outcomes by key subgroups (sex at birth, age, and race) for people living with HIV (PWH) who received cabotegravir + rilpivirine long-acting (CAB + RPV LA) dosed every 2 months (Q2M) in the Phase 3b CARISEL implementation study.

CAB + RPV LA Q2M was effective for the maintenance of virologic suppression in a diverse population of PWH across Europe, irrespective of sex at birth, age, and race.

The overall rate of confirmed virologic failure (CVF) was low (0.23%), with one participant having CVF through Month 12. One participant was withdrawn following two instances of suspected virologic failure (SVF).

CAB + RPV LA Q2M was well tolerated and infrequently led to withdrawal across all subgroups evaluated.

Introduction

- CAB + RPV LA administered Q2M is the only complete LA maintenance regimen indicated for virologically suppressed PWH.^{1,2}
- CAB + RPV LA reduces dosing frequency compared with daily oral antiretroviral therapy and may help address psychosocial challenges associated with oral treatment, including fear of disclosure, anxiety around medication adherence, and daily reminders of HIV status.³
- CAB And RPV Implementation Study in European Locations (CARISEL; NCT04399551) is a Phase 3b, multicenter, open-label, hybrid type III implementation–effectiveness trial evaluating participants switching from daily oral therapy to CAB + RPV LA dosed Q2M across five European countries (Figure 1).
- CAB + RPV LA dosed Q2M was efficacious and well tolerated, with 87% of participants in CARISEL maintaining HIV-1 virologic suppression, consistent with the results from four large Phase 3/3b CAB + RPV LA trials.^{4–8}
- By design, the CARISEL study enrolled a diverse set of participants broadly representative of PWH in Europe.
- This *post hoc* analysis summarizes efficacy and safety outcomes by key subgroups (sex at birth, age, and race) through 12 months.

Methods

Figure 1. CARISEL Study Design

Hybrid Type III Implementation–Effectiveness, Phase 3b, Open-Label Study Across Five **European Countries**

PSPs (N=437)*		OLI CAB	+ RPV LA	Q2M				CAB Q2M per c clinic	+ RPV LA administration current cal practices
	Day	1 Dose 1 [†]	Dose 2 [†]	Dose 3	Dose 4	Dose 5	Dose 6 Do	ose 7	Continuation of treatment

Month ²

*437 PSPs enrolled, and 430 received CAB + RPV LA. PSPs were ≥18 years of age, receiving a highly active ART regimen for ≥6 months prior to screening, had plasma HIV-1 RNA <50 copies/mL twice in the 12 months prior to and at screening, and no prior CVF. [†]Dose 1 was received at Month 1, Dose 2 at Month 2, with the remaining doses Q2M thereafter ART, antiretroviral therapy; CAB, cabotegravir; CVF, confirmed virologic failure; LA, long-acting; OLI, oral lead-in; PSP, patient study participant; Q2M, every 2 months; RPV, rilpivirine.

Month 12

- The CARISEL study enrolled virologically suppressed PWH from Belgium, France, Germany, Spain, and the Netherlands to receive CAB + RPV LA dosed Q2M.
- Clinics with no prior experience with administering CAB + RPV LA were preferentially selected for study participation.
- In this post hoc analysis, data from participants receiving CAB + RPV LA in CARISEL were stratified by sex at birth (female and male), age (<50 and ≥50 years), and race (White, Black, Asian, and Other races) and are summarized descriptively.

Endpoints assessed at Month 12:

- The proportion of participants with plasma HIV-1 RNA ≥50 copies/mL and <50 copies/mL (FDA Snapshot algorithm).
- The incidence of CVF (two consecutive HIV-1 RNA ≥200 copies/mL).
- Safety and tolerability.

Jade Ghosn^{1,2}, Laurent Hocqueloux³, María José Crusells-Canales⁴, Leïla Belkhir⁵, Celia Jonsson-Oldenbüttel^{6,7}, Thomas Lutz⁸, Marc van der Valk⁹, Berend J. van Welzen¹⁰, Kai Hove¹¹, Mounir Ait-Khaled¹¹, Rebecca DeMoor¹², Gilda Bontempo¹³, Christine L. Latham¹³, Cassidy A. Gutner¹³, Supriya lyer¹⁴, Martin Gill¹⁵,

Results

Table 1. Baseline Characteristics

CAB + RPV LA Q2M (n=430)		Table 3. Participants With CVF and SVF*							
Age (years), median (IQR)	44.0 (37–51)				Participant	with CVF [†]			
≥50 years, n (%)	129 (30)	Sex at							Phenotypic
Sex at birth, n (%)		birth, race,	HIV-1			INI RAMs	RPV	INI	resistance
Female	109 (25)	baseline	subtype	Viral load at	RPV RAMs	observed	RAMs	RAMs	(fold-
Male	321 (75)	BMI (kg/m²) ,	at	SVF/CVF	observed at	at	observed	observed	change) to
Race, n (%)		country	baseline	(copies/mL)	baseline	baseline	at failure [‡]	at failure [‡]	RPV/CAB §
White	336 (78)	Female,							
Black/African heritage	76 (18)	White, 29,	G	214/1861	E138A	None	E138A +	None	22.0/0.9
Asian	9 (2)	Germany					M230L		
Other races*	9 (2)				Particinant	with SVE			
BMI (kg/m ²), median (IQR)	25 (23–28)				r articipant				
≥30 kg/m², n (%)	56 (13)	Male, White,	B	585/NA	None	None	F138K	N155N/S¶	6 1/1 3
Duration of prior ARTs (months), median (range)	95.5 (10–368)	30, Spain		000/14/1			LIGOR		0.171.0

*Other races: American Indian or Alaska Native, n=7: mixed race, n=2. ART, antiretroviral therapy; BMI, body mass index; CAB, cabotegravir; IQR, interquartile range; LA, long-acting;

- Q2M, every 2 months; RPV, rilpivirine. • Overall, 430 participants received CAB + RPV LA Q2M; 25% were female (sex at
- birth), 30% were aged \geq 50 years, and 18% identified as Black (**Table 1**). An additional seven participants were enrolled but withdrew prior to receiving study treatment, two of whom withdrew due to protocol deviation (eligibility criteria not met), and the remaining five participants withdrew consent.
- Few participants were in the Asian and Other races subgroups (both n=9).

Figure 2. Virologic Response at Month 12

 At Month 12, rates of virologic suppression (HIV-1 RNA <50 copies/mL) with CAB + RPV LA ranged 78–100% across subgroups, and rates of non-response (HIV-1 RNA \geq 50 copies/mL) ranged 0–1% (**Figure 2**).

Table 2.Snapshot Outcomes at Month 12

	Sex at birth		Age (years)					
Parameter, n (%)	Female (n=109)	Male (n=321)	<50 (n=301)	≥50 (n=129)	White (n=336)	Black (n=76)	Asian (n=9)	Other races (n=9)
HIV-1 RNA <50 copies/mL	92 (84)	281 (88)	262 (87)	111 (86)	295 (88)	62 (82)	7 (78)	9 (100)
HIV-1 RNA ≥50 copies/mL	1 (<1)	2 (<1)	2 (<1)	1 (<1)	2 (<1)	1 (1)	0	0
No virologic data	16 (15)	38 (12)	37 (12)	17 (13)	39 (12)	13 (17)	2 (22)	0
Discontinued due to AE or death	10 (9)	30 (9)	24 (8)	16 (12)	32 (10)	7 (9)	2 (22)	0
Discontinued for other reason	3 (3)	4 (1)	6 (2)	1 (<1)	5 (1)	2 (3)	0	0
On study but missing data in window	3 (3)	4 (1)	7 (2)	0	3 (<1)	4 (5)	0	0
AE, adverse event.								

Acknowledgments: The CARISEL study was funded by ViiV Healthcare. The authors thank everyone who has contributed to the CARISEL study, including all patient participants and their families, and the CARISEL clinical investigators and their staff, in Belgium, France, Germany, the Netherlands, and Spain. Editorial assistance was provided by Poppy Mashilo of Scimentum (Nucleus Global), with funding provided by ViiV Healthcare.

Snapshot outcomes were comparable between subgroups; 0–22% of participants had no virologic data (Table 2).

	Participant with CVF [†]									
Sex at birth, race, baseline BMI (kg/m ²), country	HIV-1 subtype at baseline	Viral load at SVF/CVF (copies/mL)	RPV RAMs observed at baseline	INI RAMs observed at baseline	RPV RAMs observed at failure [‡]	INI RAMs observed at failure [‡]	Phenotypic resistance (fold- change) to RPV/CAB§			
Female, White, 29, Germany	G	214/1861	E138A	None	E138A + M230L	None	22.0/0.9			
	Participant with SVF ^{II}									
Male, White,	В	585/NA	None	None	F138K	N155N/S¶	6.1/1.3			

*Data previously presented at IAS 2022, poster EPLBBO5. *Following discontinuation, the participant switched to darunavir/cobicistat/ emtricitabine/tenofovir alafenamide. [‡]CVF or SVF. [§]The CVF and SVF virus was susceptible to CAB, dolutegravir, and bictegravir. Participant met the SVF criterion (HIV-1 RNA 585 copies/mL) at Month 4 but was not confirmed at the Month 4 retest. Following a second retest at Month 4, the participant met the SVF criterion (HIV-1 RNA 386 copies/mL at the time of the resistance test) and withdrew from the study, as per the principal investigator's discretion, and switched ART to darunavir/cobicistat/emtricitabine/tenofovir alafenamide. IN155S is an extremely rare, non-polymorphic mutation that reduces raltegravir and elvitegravir susceptibility to a lesser degree than N155H.⁹ ART, antiretroviral therapy; BMI, body mass index; CAB, cabotegravir; CVF, confirmed virologic failure; INI, integrase inhibitor; NA, not applicable; RAM, resistance-associated mutation; RPV, rilpivirine; SVF, suspected virologic failure.

 Overall, 1/430 (0.23%) participant had CVF with a viral load of 1861 copies/mL at discontinuation (Month 10); the participant was White, female (sex at birth), ≥50 years of age, and had a body mass index (BMI) of 29.3 kg/m² at baseline. • At failure, the RPV resistance-associated mutations (RAMs) E138A + M230L were detected;

• At the time of CVF (6 weeks following the prior injection), CAB and RPV plasma concentrations were 1.5 µg/mL and 78.5 ng/mL, respectively. An additional participant met the SVF criterion (single HIV-1 RNA ≥200 copies/mL) twice, at Month 4 and again at last visit prior to withdrawal (Month 6); neither were confirmed upon retest; the participant was White, male (sex at birth), <50 years of age, and had a BMI of 30.4 kg/m² at baseline.

Para Any An Drug Fxc Gra AEs I treatr SAEs Drug

- no integrase inhibitor (INI) RAMs were detected; E138A was present in baseline peripheral blood mononuclear cells (PBMCs) (Table 3).

• The RPV RAM E138K and INI RAM N155N/S were detected in the SVF sample at Month 4; no INI or RPV RAMs were present in baseline PBMCs; no pharmacokinetic data were available for this participant.

Table 4. Safety Summary Through Month 12

	Sex at birth		Age (years)								
meter, n (%)	Female (n=109)	Male (n=321)	<50 (n=301)	≥50 (n=129)	White (n=336)	Black (n=76)	Asian (n=9)	Other races (n=9)			
AEs*	105 (96)	314 (98)	294 (98)	125 (97)	331 (99)	71 (93)	8 (89)	9 (100)			
/ Grade ≥3	12 (11)	37 (12)	36 (12)	13 (10)	37 (11)	9 (12)	3 (33)	0			
-related AEs	98 (90)	291 (91)	276 (92)	113 (88)	308 (92)	64 (84)	8 (89)	9 (100)			
luding ISRs	41 (38)	115 (36)	105 (35)	51 (40)	131 (39)	17 (22)	5 (56)	3 (33)			
nde ≥3	5 (5)	20 (6)	17 (6)	8 (6)	19 (6)	5 (7)	1 (11)	0			
leading to ment withdrawal	10 (9)	32 (10)	26 (9)	16 (12)	32 (10)	7 (9)	3 (33)	0			
s†	4 (4)	11 (3)	11 (4)	4 (3)	12 (4)	1 (1)	2 (22)	0			
g related uding ISRs‡	0	1 (<1)	1 (<1)	0	0	0	1 (11)	0			

*All AEs include ISRs unless specified. [†]None of the SAEs were fatal. [‡]Suicidal ideation. n=1. AE, adverse event; ISR, injection site reaction; SAE, serious adverse event.

References: 1. Gandhi RT, et al. JAMA. 2023;329(1):63-84. 2. European Medicines Agency. Vocabria Product Information. Available from: https://www.ema.europa.eu/en/documents/product-information/vocabria-epar-productinformation_en.pdf. Accessed September 2023. 3. De Los Rios P, et al. Open Forum Infect Dis. 2019;6(Suppl. 2):S481. 4. Jonsson-Oldenbüttel C, et al. IAS 2022 (Poster EPLBB05). 5. Orkin C, et al. N Engl J Med. 2020;382(12):1124–1135. 6. Overton ET, et al. Lancet. 2021;396(10267):1994–2005. 7. Swindells S, et al. N Engl J Med. 2020;382(12):1112–1123. 8. Ramgopal MN, et al. Lancet HIV. 2023;10(9):e566-e577. 9. Stanford University. HIV Drug Resistance Database. INSTI Resistance Notes. September 2022. Available from: https://hivdb.stanford.edu/dr-summary/resistance-notes/INSTI/. Accessed September 2023.

Table 5. ISR Summary Through Month 12

Parameter

Participants

injections, r

Number of in

ISR events

Pain, n (% of inje Induratior

(% of inje

Discomfo (% of inject

Nodule, (% of injed

Swelling, (% of injed

Grade 3, n (% of ISR ev

Median dura (IQR), days

Participant v due to inject reasons, n (% of partici injections)[‡]

Conclusions

- and race.
- to withdrawal

eP.A.100

Safety profiles were comparable between subgroups (Table 4).

• Excluding injection site reactions (ISRs), drug-related adverse events (AEs) occurred in 36% (n=156/430) of participants, ranging from 22 to 56% across subgroups. • No fatal AEs occurred in any subgroup.

	Sex at birth		Age (y	years)	Race					
	Female (n=109)	Male (n=321)	<50 (n=301)	≥50 (n=129)	White (n=336)	Black (n=76)	Asian (n=9)	Other races (n=9)		
with (%)	107 (98)	316 (98)	294 (98)	129 (100)	332 (99)	75 (99)	7 (78)	9 (100)		
njections, n	1514	4330	4090	1754	4590	1024	94	136		
n*	505	1353	1412	446	1453	337	19	49		
ctions)	395 (26)	1138 (26)	1148 (28)	385 (22)	1210 (26)	275 (27)	18 (19)	30 (22)		
, n ctions)	38 (3)	36 (<1)	59 (1)	15 (<1)	50 (1)	19 (2)	0	5 (4)		
t, n ctions)	12 (<1)	82 (2)	77 (2)	17 (1)	85 (2)	1 (<1)	1 (1)	7 (5)		
ctions)	28 (2)	29 (<1)	46 (1)	11 (<1)	33 (<1)	21 (2)	0	3 (2)		
n ctions)	7 (<1)	30 (<1)	30 (<1)	7 (<1)	25 (<1)	10 (1)	0	2 (1)		
vents)†	8 (2)	22 (2)	19 (1)	11 (2)	22 (2)	8 (2)	0	0		
ition	3 (2–7)	3 (2–5)	3 (2–6)	3 (2–5)	3 (2–5)	4 (3–7)	3 (2–4)	3 (2–4)		
vithdrawal ion-related pants with	7 (7)	18 (6)	13 (4)	12 (9)	19 (6)	6 (8)	0	0		

*A single injection could result in more than one ISR. The five most common ISRs overall are listed. [†]There were no Grade 4 or Grade 5 ISRs. [‡]Includes participants who discontinued due to ISR AEs, and an additional participant who withdrew from the study citing injection intolerability. AE, adverse event; IQR, interquartile range; ISR, injection site reaction.

ISR profiles were comparable across subgroups (Table 5).

• Most ISRs were Grade 1 or 2 (98–100%) in severity, with a median duration of 3–4 days, and few participants discontinued due to injection-related reasons across subgroups (0–9%)

 CAB + RPV LA Q2M was efficacious for the maintenance of virologic suppression across a diverse population of PWH in Europe, irrespective of sex at birth, age,

• CVF was infrequent, with one participant (0.23%) meeting the criterion at Month 10. • An additional participant met the SVF criterion at Month 4 and prior to withdrawal at Month 6. • Across subgroups, CAB + RPV LA Q2M was well tolerated, with most ISRs being mild to moderate in severity, short in duration (median, 3–4 days), and infrequently leading

 This analysis was limited by the small sample size of certain subgroups, which limits some of the conclusions that can be drawn.

This content was acquired following an unsolicited medical information enquiry by a healthcare professional. Always consult the product information for your country, before prescribing a ViiV medicine. ViiV does not recommend the use of our medicines outside the terms of their licence. In some cases, the scientific Information requested and downloaded may relate to the use of our medicine(s) outside of their license.

19th European AIDS Conference; October 18-21, 2023; Warsaw, Poland